
AD-I44984 HARONIABE CAME AN KAHUNN LASES F POCESES 1/
IL4 984 H RM N B N A N N AV RV SI E DEP O CSSESEMATIC

AM M RN J UN 8 R 4N001 U 4 U P 5 MAH6 TC
UNCLASSIFUIED8A3

7EEEEEE 

12/1hhE
mEmhhEmhEEEEEEmommomMo ENDo

*flflflflflflfl8



11_L25______ 3 111'

_ OL II I!N i



HARMONIZABLE, CRAMR, AND KARHM EN

CLASSES OF PROCESSES*

-by

M. M. Rao

Technical Report No. 9

W July 12, 198401

o.-

qAN ?

UNIVERSITY OF CALIFORNIA
DEPARTMENT OF MATHEMATICS

>_ RIVERSIDE, CALIFORNIA 92521

LA % C,

-.. " .. ...

......................................
= ,.



HARMONIZABLE, CRAM9R, AND KARHUNEN

CLASSES OF PROCESSES*

by

M. M. Rao

Technical Report No. 9

July 12, 1984

*Prepared under the Office of Naval Research Contract
N00014-84-K-0356.

;

til j



HARMONIZABLE, CRAMER, AND KARHUNEN
CLASSES OF PROCESSES

M. M. Rao
Univemrity of California, Riverside, Ca., 92521

1. Introduction. If {Xt, t E T} is a family of random variables with zero

means and finite variances, then it is termed a second order centered process (or

time series). Several subclasses of such processes and their analyses are discussed

in this article. They are taken to be centered for convenience. The simplest and

most well-understood class is the 8tationary one. This is a second order process

whose covariance r is a continuous function which is invariant under shifts of the

time axis T taken to be either integers, T = Z (the discrete case), or the real line,

T - R (the continous case). Thus in either case one has:

r(at) = E(X..ct) = X.JXdP, a,t, E T (1)

and r(*, t) -(s - t) which depends on the difference of . and t. Writing r for i,

it follows from the classical theorems of Herglotz and Bochner that r is expressible

as:

r -t) o,t, T,(2)

where T = (0, 2r) if T - Z and t R ifT R. Here F is a nonnegative,

nondecreasing bounded function on T, called the spectral function of the process.

The importance of the stationary class in electrical and communication engineer-

ing is well-known and a good expositon may be found in Yaglom [34] where the

pioneering works of Wiener and Kolmogorov are also discussed. Many statistical

problems on these processes have been treated by Grenander and Rosenblatt [111,

and by Parzen [221 who includes some related extensions.

In a number of other applications, stationarity is an unacceptable restriction.

Since one is not certain about the fulfillment of the stationarity assumption, it is
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at least desirable to have a knowledge as to how far the results obtained under

this condition are still valid when it is relaxed. In other words, one wants to know

whether thee is some kind of "robustness" for this work. In a response to such

questions and also to take into account some honestly nonstationary processes,

the classes of harmonizable and Karhunen families have been introduced indepen-

dently and simultaneously by Loive [161 and Karhunen [141. Only slighty later

a common generalization of both these classes was formulated by Cramer 16]. An

analysis and interrelations together with some of their extensions constitute the

main theme of the present exposition. It turns out that harmonizable processes,

properly generalized, have the "robustness properties" alluded to above. Also their

study proceeds through Karhunen classes since it is shown that the harmonizable

family is an important subset of Karhiunen processes. A discussion of Cramer's

class is included since technically this illuminates the structure of the above two

families and has independent interest.

There are two other important classes of nonstationary processes that have

been considered in recent studies on the subject. One is the class(KF), studied

extensively by Kamp6 de Feriet and Frenkiel [13] and independently by Parzen

[211 who termed it "asymptotically stationary", and by Rozanov [311. The second

one is the Cramir-Hida class which is based on the "multiplicity theory", having -

been motivated by the classical work of Hellinger and Hahn on infinite matrices.

It turns out that a stationary process has multiplicity one, while there is a har-

monizable process of any given multiplicity, 1 < N <: 0o, (cf.[7],[12],[5]). Even in

the multiplicity one case, there are several types of nonstationary processes useful

in prediction and filtering problems. This indicates that classes of nonstationary

processes can be studied, using different techniques frequently in the time domain.

It will also be found that generalizations of spectral ideas have a role to play in

this work. Let us thus turn to a detailed description of these statements.
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2. Harmonziable processes. From the point of view of applications, one of the

most useful extensions of stationarity is harmonizability. Since for nonstationary

processes (of second order) the covariance function r, given by (1), must depend

on both variables 9, t, it is natural to consider those processes for which the analog

of (2) still holds. This leads to the following concept, introduced by Loive [16],

and it is called strongly harmonizable hereafter. Namely, the covariance r admits

the representation:

r(8,t) = f exp(ieA - itA')F(dA, V), 8,t E T, (3)

where F is a covariance function of bounded variation on t x T.

In contrast to the Bochner-Herglotz theorem, there is no usable characteriza-

tion of such an r. But it is easily seen that strongly harmonizable processes exist

in abundance. Indeed, let f be any (Lebesgue)integrable scalar function on the

line, and denote by f its Fourier transform, i.e.,

(t) = fR e OAf(A)dA, t E R. (4)

If { is a random variable with mean zero and unit variance, consider {X -

f(t), t E R}. Then X, has mean zero and the covariance r is given by

r(8, t) -E(X.Xt) -1(a)f(t) J ezp(iqA-itA') f(A)f(A')dAdA'.

Taing

F(A, A') = J f f(z)f(j)dxdy,

one verifies that F is positive definite and of bounded variation so that the Xt

process is strongly harmonizable. All finite linear combinations of such "simple"

processes constitute a large class and if F in (2) is absolutely continuous, then
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these simple processes are even "linearly dense" in a certain well-defined sense.

On the other hand, if F of (3) concentrates on the diagonal A = A', then clearly

(3) reduces to (2). Thus stationary processes are properly extended.

Even though the Loeve extension of stationarity is useful, it does not go far

enough to afford a flexibility for linear operations on these processes. Since the lat-

ter operations appear naturally in filtering problems, a further extension is needed

to take care of these applications. First let us consider an example to understand

how certain simple Hinear operations lead from stationarity to problems beyond

the strongly harmonizable class. Thus let L2(P) be the space of scalar random

variables with zero means and finite variances so that a second order process con-

sidered in this paper is a subset of LQ(P). Let the metric (or norm) be denoted

by ~IflI - vIUf!2)], f E Lo(P). If A is a bounded linear transformation on

Q2P), so that AX, = Ye E L2(P), consider a stationary (or strongly harmoniz-

able) process {Xt, t E T}, and the transformed process {Y, t E T}. If the range

of A is finite dimensional, then the Y process is strongly harmonizable (can be

nonstationary) and if the range of A is infinite dimensional then the Yt process

need not be strongly harmonizable. For instance, let T = Z,X. = fC, an or-

thonormal sequence (hence stationary) in L2(P), and A be the projection such

that Y. = AX. - f,, for n > 0, = 0 for n < 0. Then the Y, -sequence is a

truncation of the original orthonormal sequence, but it is not strongly harmoniz-

able. This fact as well as the preceding general statement on the range of A is not

entirely simple. The details maybe found in (281. Since, as remarked earlier, linear

operations are important for (filtering and other) practical problems, one should

have an extension to include at least these questions. Fortunately this is possible

and it can be formulated as follows.

Let {Xt,t E T} C L2(P) be a process with r as its covariance. If r admits

a representation of the form (3) with F(., .) as a covariance function which is
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not necessarily of bounded variation (as demanded in (3)) but satisfies only the

weaker condition of finite Frechet variation, then the process is termed weakly

harmonizable. Recall that F has finite Frechet variation on R2 if

IF1(R x R) = eup~j E a1i ]F(dA~d)')I :jail 1, a, EC

{!I}1 disjoint intervals in R, n > 1} < 00.

In case aicd ft fi. F(dA, dA') is replaced in the above by a, = I and f1, fi IjF(dA, dA')l,

then one has the usual (Vitali) bounded variation. This small alteration makes an

essential difference since IFI(R x R) < oo can hold when the usual variation on R

is infinite. A simple example exhibiting this phenomenon is the truncated series of

the preceding paragraph whose verification, however, needs some work. Thus each

strongly harmonizable process is weakly harmonizable but not conversely, and the

latter is a strictly larger class. But one has to make concession to a technical prob-

lem in this generalization. The integral in (3) is in the usmal Lebesgue-Stieltjes

sense when F is of bounded variation, but in the general case it must be defined in

the sense of Morse and Transue [181. The thus defined MT-integral is somewhat

weaker than the usual LS-one in that the generalization does not admit the Jordan

type decomposition, and the standard Fubini type theorem is not valid. However,

enough usable properties are available to proceed with a substantial amount of the

work for many applications. A systematic account on the structural properties of

these extended processes may be found in [28], (cf. also [20]). As a consequence one

deduces that if {Xt, t E T} is weakly harmonizable and A is a bounded linear (and

even some unbounded ones such as the differential) transformation, Y, = AXt,

then {Y,, t E T} is also weakly harmonizable. Thus the latter class is closed under

such mappings. For these reasons, the positive definite function P in (3). of finite

Frkhet variation, is often called the (generalized) spectral function of the harmo-
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nizabie process, even though it can be complex valued. Such spectra have also

important roles to play in applications such as sampling the process, filtering and

even prediction problems.

The above definition may be given a different (but equivalent) form due to

Bochner [21. For a reference it is stated as follows:

Theorem 2.1 A second order process {X,, t E T} c L2(P) is weakly harmo-

nizable iff (= if and only if)

(i)E(IX 12 ) < M < oo, t E T, for a constant M > 0,

(ii) the covariance r(., .) is continuous on T x T

(iii)sup{E(I fT f(t)X(t)dt 2 ) : I[f]l. < 1} < 00 (5)

where j is the Fourier transform, given by (4), for each integrable f on T and the

integral in (5) is defined in a standard manner as a vector (or Bochner) integral

Iifl. being the uniform (= supremum) norm of f.

Even though both these harmonizability concepts are generalizations of sta-

tionarity, there is a deep reciprocal relationship between them. This is quite im-

portant for some applications. The following example gives an indication of this

property and explains the underlying reasons more vividly.

Example. Let {S(t), t > 0} be a family of bounded linear mappings on L2(P)

such that

(i) S(u + v) = S(u)S(v), u, v > 0, S(0) = identity

(ii) IIS(u)fl < Ilif!I, fe L(P) where Ilf112 = E(1f12), and

(iii) Ij8(u)f - fII - 0 as u -.l 0+.

Such a family is usually called a continuous contraction semigroup on Lo(P).

For any given Xo E Lo(P) define the process {Yt, t E T} as:

Y(t) = S(t)Xo, if t 2_ 0, = S'(-t)Xo, if t < 0,
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where S (u) stands for the adjoint of S(u) so that it is a linear mapping satisfying

the relation

E((S(u)f)#)= E(f(S(u)g)), all fg in LP).

Then the Y(t) -process can be shown to be weakly harmonizable. This is not

obvious. One shows that, on letting S(-u) = S'(u), u 0 0, the family {S(u), u E

T} is positive definite in the sense that

E(Sui- uy) f,) J) 2:0, f. E L0()

for each finite set {ul, ..., u,} C T. This is easy if T = Z and the case that

T = R is then reducible to the former. Then one applies a form of the next

result to deduce that there is a family of unitary transformations V (meaning

VtVt* = V*V = identity, (i) and (iii) hold), on a larger space Lo2(P') : L2(P) such

that S(t) = QVt, t E T. Here Q is the orthogonal projection of L2(P) onto L2(P).

It should be noted that if S(t) = V, so that L2(P') = L2 (P) and Q = identity,

then Y = VtXo, t E T, gives the classical representation of a stationary process.

Thus the connection between these two ciaasea obtained by an enlargement of the

underlying probability space is an important and a deep result.

The precise statement alluded to above is the following:

Theorem 2.2 Let (Yt, t E T} C L2(P) be a given (weakly or strongly) harmo-

nizable process. Then there ezists a possibly enlarged probability space on which is

defined L'(P) containing L2(p), an vrt, pnal prcjetiw Q n L 2( with range

L2 (p), and a stationary process {Xt, t E T} (C L (P)) such that

7



Yt = QXt, t E T. (This Yt process is termed a dilation of the harmonizable Xt-

process.) In the opposite direction, each stationary process {Xt, t E T} C Lo(P)

and each continuous linear transformation A on L2(P) define {Yt = AXt, t E T},

as a toeakly (but usually not strongly) harmonizable process in Lo(P).

The super space Lo(P) is not generally unique, but one can find a minimal

space with the desired properties. The result and its extended space may be

obtained essentially "constructively." It is related to some work of M.A. Naimark,

B. Sz-Nagy and others on Hilbert space operator theory. A detailed proof with

related references is given in [28]. Based on this result one can show that each

weakly harmonizable process may be represented in terms of a (continuous) positive

definite semi-group, as described in the preceding example.

The above theorem enables some extensions of the well-known results from the

stationary theory to the harmonizable case. For instance, the following inversion

formula for F(.,-) of (3) can be obtained from the classical work at once.

Proposition 2.3 Let r be a weakly harmonizable covariance function with F

as its representing function-the spectral measure. If A = (al, a2), B = (b1 , b2) are

two intervals such that ai, bi, i - 1, 2, are continuity points of F, then one has

l_/m e- - e--161 eibjt - eibt

F(A,B) = lira - -- it (s,t)dsdt. (6)

The generally complex valued spectral function F of the precets Plasa fe,

in analyzing harmonizable processes somewhat similar to the one given by the

classical case (2). So it is desirable to estimate F and investigate the asymptotic

properties of such estimators. This problem, even in the strongly harmonizable

case, is not yet solved. Other unresolved points will be recorded for future work,

as the exposition proceeds.
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The strongly harmonizable case admits an extension in a slightly different

direction. The covariance function r of (3) may be written as:

r(s,t) = J (.A)(tA')F(dAd'), 3,t E T. (7)

where g(t, A) = ezp(itA), which is 2r periodic in t for each A E t. Also g is

bounded and jointly continuous in the variables t, A. The result (7) is meaningful

if g : T x D - C(D C T) is almost periodic on T for each compact subset D of

T. More explicitly, a complex valued continuous function g on T x D is almost

periodic on T uniformly relative to D if for each compact subset K of D, and eac'

c > 0, there is a number lo = lo(e, K) such that each interval I c T of length

contains a number r (called an f -translation number of g) for which one has

Jg(t+r,A)-g(t,A)J!<e, tET,AEK. (8)

If D is a single point then g is called the classical almost periodic function; and

in any case, for each A E K C D,g(.,A) is bounded. With this concept, a second

order process {X,, t E T} C L2(P) is termed almost harmonizable if its covariance

r admits the representation (7) with respect to a family {g(., A), A E±} of almost

periodic functions on T uniformly relative to t, and a covariance function F of

bounded variation. It will be seen in Section 6 below that this family inherits an

important structural property of strongly harmonizable processes of which it is an

extension.

From an applicational point of view, however, one should consider multivariate

processes. Thus if X : fl -. C',t E T, so that Xt (X, ... ,Xf), let Xt' E

L2(P), i , ... ,n; t E T. Then the X, -process is termed multivariate strongly or

weakly or almost harmonizable (relative to a fixed scalar almost periodic g -family

in the last case) if for each vector a = (a', ..., a') E C ' , the scalar process



Xt=I&X t ET,

is of the same type as defined in the preceding paragraphs. From this definition, it

follows after an easy algebraic manipulation that for each 1 _< j, k < n, and 9, t in

T, the (cross-) covariance function rik of the component processes X', Xt, is also

harmonizable and that

7jk (3, t)0 e'"Ait'Fi(dA, dA#), a, t E T,()

where Fi(A x B) = Fki(B x A), and each Fj,, is of respectively usual (Vitali)

or Fr6chet variation finite, Fij being positive definite (Fp,, need not be). If r =

(ri,,, 1 :_ j, k :_ n) and F = (Fit, 1 :_ j,k ,_ n) are n-by-n matrices, then the

matrix covariance function r of Xt admits the representation

r(s, t) = J fi g (s, A) g(t, A 1) F(dA, dA'), (10)

with g(e, A) - e"A in the (weak or strong) harmonizable case. The integrals here

are defined componentwise. Again F will be called the apectral matriz function of

the vector process {Xt, t E T}.

In all the above cases F has the following important property inherited from

r:

0 < trace( f (A)F(dA, dA')f (A')) <00 (11)

for any m-by-n matrix function f with bounded Borel entries. Here f* is the

conjugate transpose of f. In the stationary case one has F(A, A') = 8Ax,G(A),

where 6 p is the Kronecker delta and G is a positive definite hermitean n-by-n

matrix function. In the general (e.g., harmonizable) cases the latter property is

no longer present because of the behavior of the off-diagonal entries of F noted
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earlier. Before considering the spectral properties of the multivariate harmonizable

processes, it will be necessary to discuss another extension of stationarity due to

Karhunen 114] and some of its ramifications. Let us introduce this.

3. Karhunen class. It will be useful to motivate the concept in the following

way. Consider a stationary (scalar) covariance function r. By (2) it has a spectral

function F which is positive, increasing, and bounded. Suppose that F admits a

density f (relative to the Lebesgue measure). Then (T = R so that T = R also)

r(a,t) = e'* t) f(A)dA

= f evV7 ((etAv/T(T)-dA

h(8 + u)h(t + )d, 8, t E T, (12)

where h is the Fourier transform of v7 (which exists) and then the last equality

follows by the Parseval formula (since V7 is square integrable). Note that if T = Z,

then h is a polygonal function and the integral in (12) reduces to a (possibly infinite)

sum. Thus a process whose covarinace is representable by a formula. of the type

(12) relative to a Borel family{h(t, .), t E T} and a measue i (here h(t, .) = h(t+.)

and dj(A) = dA) includes the stationary class, and brings in considerable flexibility.

It should also be observed, from (12) and (2), that even a stationary covariance

can have different representations, and this remark will be pertinent later on. Let

us thus present the desired general concept.

Definition. A process {Xt, t E T} C L2(P) with covariance r is said to

belong to the Karhunen class if there is an auxiliary measure space (S, S, v) and a

set of complex functions {g(t, .), t E T} C L2 (S, S, v) such that

r(ti,t 2 ) I g(tl,A)(t 2 , A)v(dA), ti E T,i = 1,2. (13)

11



Here both S, T can be general sets without any relation. In applications, One

usually has T = R,Z (as is assumed in this article) and then S -T (=R, orfo, 2r)),

or C, or such others. Also v can be a nonfinite measure (dv - dA, the Lebesgue

measure on R in (12) is an example).

The Karhunen class is quite large. It was already noted that stationary pro-

cesses are included in it. From the forms (4) and (13) it is not at all evident that

there is any relationship between harmonizable and Karhunen classes. It will now

be shown that the former is also a subset of the latter. This fact could not be

obtained until the availability of the dilation result (Theorem 2.2). It also depends

on another classical fact (due to Cramir) that each stationary process {Xt, t E T}

is representable as:

x,= f t Z(dA), t ER, (14)

where Z(A) E L0(P) and E(Z(A)Z(B)) = F(Af nB), for any Borel sets A,B c ',
the measure F being the same as that of (2) which is related to the covariance

function r of the X process. Such a Z(.) is called an orthogonally scattered measure

by Masani [17]. With this set up one has:

Theorem 3.1 Each weakiya .y proce.. {X t , t E T} is also a Karhune,*

process relative to a finite positive measure v on T and a suitable Borel family of

functions {ft,t E T} in L2 (T, v).

Proof. A sketch of the argument follows because it is not yet available in the

literature, and it is not long. Since the Xt process is weakly harmonizable, by

Theorem 2.2 there exists a stationary dilation {Yt, t E T} C Lo(p) on a larger

probability space and L2(P) can be identified as a subspace, such that X, -

QY,t E T, and Q is the orthogonal projection from L2(16) onto L2(P). But by

(14),
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Yt= f etA (dA), t E T,

and Z is orthogonally scattered. Let v(A) = E(IZ(A)12 ).Then v(.) is a finite

positive measure on T. But by a classical theorem of Kolmogorov (see [32], p. 33,

and also [17], Thn. 5.10), there exists an orthogonal projection II on L2 (±, v) into

itself induced by Q such that

Xt = QY= Q(J I tAZ(dA)) = i t  t E T. (15)

If f(t, A) E ("())(A),A E T, then {f,,t E T} C L2 (t,) and (15) further implies

r7(, t) = E(XXt) = Jf(, A)f(t, A)zY(dA).

This means that r has the representation (13) relative to {f(t, .), t E T} and v, so

that the Xt is of Karhunen class, as asserted.

This result which is a consequence of the preceding work, exhibits a type of in-

clusiveness of the Karhunen class and will be shown below to have.a deeper impact

on the structural analysis of (multivariate) harmonizable processes. It is however

also useful to note another property of this family regarding the existence of shift

operators on a nonstationary subclass. This is significant since harmonizable pro--

cesses themselves actually do not admit such shifts in contrast to the stationary

class. Let us explain this in more detail because it is not at all obvious.

Let {Xt,t E T} C L(P) be a process. For each 8 E T, define r.Xt = X,+,

and, if possible, extend r. as a linear transformation on LQ(P). The thus extended

r. (also denoted by the same symbol) is called a shift operator on the process. If

the Xt process is stationary then it is well-known that such a r, exists, and in fact

E= E = r(u - v)= E(XX).

13



Thus r. preserves the lengths (= norms) and it is unitary. However, for a harmoniz-

able process such a r, need not exist. For instance, consider Y = Xt for t > 0, = 0

for t < 0 where the Xt process is stationary. Then by Theorem 2.2, {Yt, t E T} is

weakly harmonizable, but if u, u < 0, and s E R such that u + a > 0, v + 8 > 0, for

all such i,

E(X,.f,) = 0 0 r(u-v) E(X+.X.+.).

In fact, assuming that the Xt process is not identically zero, one has

!IY,112 = E(IY. 2 ) = 0, but [[rTY,1 2 = E(IY.+1 2 ) = r(O) 9 0.

Hence r. cannot be linearly extended. Here are some simple (good) sufficient

conditions for a shift operator r. to exist and be continuous. For each finite set

t1 ,...,tt of points from T, and complex numbers a1,...,a , if U,- E 1i Xt ,

then

U, = 0 * r.U, = X, = 0. (16)

Equivalently

n

IIU,112 = Zatair(t, t) = 0

implies

l,UnII'=2 E i dir(t, + 8, tj + 8) = 0.
i-1 j=1

14



Then r. can be extended by linearity (unboundedly in general) onto the linear

subspace ) of L2(P) generated by {Xt, t E T}. Such a r, will also be bounded if

there exists a number c > 0 such that

lr.U.1l < tllU.II. (17)

In the stationary case c - 1 and there is equality in (17). As an easy consequence of

(16), one will have r~r,,= r.+,, and hence on the relevant subspace 1, {r, a E T}

should form a semi-group. Since this is true for the stationary case (with r. as

unitary) and since one wants to include some nonstationary processes, it is natural

to look for the ro family, with some structure, at least as a normal operator semi-

group, i.e. {r,,8 E T} should satisfy the commutativity relations r. r. = r* rr. (r* is

the adjoint of r.). Let us find out possible nonstationary processes admitted under

such an assumption, since the stationary class is automatically included (because

every unitary operator is normal). The mathematical detail will be minimized

here.

Let frt, i 0} be a bounded semi-group of normal shifts on (Xt, t 0} such

that I r.X-XII - 0 ass - 0 for each X E N, the closed span of the X in'L,(P). In

order to include the unitary (or equivalently the stationary) case, r, should not be

assumed self-adjoint! Thus normality is the next reasonable generalization. [Also

the condition that Ir.X-XI -, 0 is known to be equivalent to the strong continuity

of r, for a > 0 and the boundedness of r. on 0 < s < 1 as well as the density of

U.>or.(X) in M. This is thus a technical hypothesis.] Let Ah, = (r, - 1)/h, h > 0.

Then A,. is a bounded normal transformation for each h. It is a consequence of

the classical theory of such semi-groups that for each X E N one has

rTX = lim e A h X, (18)
h-0

the limit existing in the metric of N, uniformly in a on closed intervals [0, a], a > 0.
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On the other hand, for each h > 0, Ah, is a bounded normal operator on the Hilbert

space M. Hence one can invoke the standard spectral theorem according to which

there existis a "resolution of the identity", {E:(A), A C C} such that

AX= fc zE(dz)X, X (19)

where the integral is a vector integral and /s (A) = Ej,(A)X E XI, gives a vector

measure. Here Mo c M is the subspace for which the integral exists, i.e. z is i

integrable for X E No. But from the same theory one can also deduce that

e A IX 1C f e8 Ek(dz)X, X E M, c No (20)

for which elx is J-integrable. If y" E )1*, then y*Eh(.)X is a signed measure in

(20) and if y" = X(E N" = M) then it is a positive bounded measure for each

h so that one can invoke the Helly selection principle and then the Helly-Bray

theorem in one of its forms to conclude that limio y*iE(.)X converges to some

a signed measure. This may be represented as y*F(.)X for an F(.) which

has properties analogous to those of Eh(-). Here the argument, which is standard

in spectral theory, needs much care and detail. With this one can take limits in

(20) as h - 0 and interchange it with the integral to get

r.X = lim eA e'F(dz)X. (21)

Thus the measure F(.)X is orthogonally scattered and is supported by the inter-

section of the spectral sets of A,, h > 0. It now follows that, if X. r.Xo, then

by (21) with X = Xo(E )1 ) there, one gets

X. = f eZ(dA), a> 0 (22)
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where Z(.) on C is an L*(P)- valued orthogonally scattered measure. The covari-

ance function r of this process is given by

r(8, t) = E(X.Xt) =] ezp(8z + t2) G(dz), (23)

with G(A n B) = E(Z(A)Z(B)). If S = C and v = G in (13), one sees that

{X.,.i > 0} is a Karhunen process relative to f(s, .), 8 > 0, f(s, z) = e~z , and the

finite positive measure G such that f(8, .) E L 2 (C, G), 8 > 0. If C is replaced by

its imaginary axis, and for a < 0 the process is extended with X. = rj.Xo, then

the stationary case is recovered (cf. (2)). That (23) is essentially the largest such

subclass of Karhunen processes admitting shifts again involved further analysis

and this was shown by Getoor[9] in detail.

Thus the Karhunen class contains a subset of nonstationary processes which

admit shift operations on them and also a subset of nonstationary processes (na-mely"

the harmonizable class) which do not admit such transformations. Since the repre-

senting measures in (3) and (23) or (13) are of a different character (it is complex

"bimeasure" in (3) and a regular signed measure in (13)), a study of Karhunen pro-

cesses becomes advantageous for a structural analysis of various stochastic models.

On the other hand (3) shows a close relationship of some processes with a pos-

sibility of employing the finer Fourier analytic methods, giving perhaps a more

detailed insight into their behavior. Thus both of these viewpoints are pertinent

in understanding many nonstationary phenomena.

4. Cramdr cla88. After seeing the work of the preceding two sections it is

natural to ask whether one can define a more inclusive nonstationary class incor-

porating and extending the ideas of both Karhunen an Lo~ve. Indeed the answer

is yes and such a family was already introduced by Cram6r in 1951, [6], and a brief

description of it is in order. This also has an independent methodological interest

since it results quite simply under linear transformations of Karhunen classes in
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much the same way that harmonizable families result under similar mappings from

the stationary ones.

One says that a function F on t x t into C is locally of (Frihet) variation

finite if the restriction of F to each finite proper subrectangle f x I of T x T has

the (Frichet) variation fnite, I C T being a finite interval. Let us now state the

concept in:

Definition. A second order process {X,, t E T} C L' (P) is of Cramer class

(or class (C)) if its covariance function r is representable as:

r(tit 2 ) = jfg(tA)(t 2 'A')L(dA'dA')' t, E T,i = 1,2, (24)

relative to a family {g(t, .), t E T} of Borel functions and a positive definite function

v of locally bounded variation on S x S, S being a subset of t (or more generally a

locally compact space) and each g satisfying the (Lebegue) integrability condition:

0 !5 ]S/S g(t, A)g(t, A')v(dA, dA') < oo, t E T. (25)

If v has a locally finite Frhet variation and the integrals in (24) and (25) are in

Morse-Transue sense, the corresponding concept is called the weakly of class (C).

It should be noted that, in (24), v is of locally finite variation means that

v determines a regular complex measure on S x S, which is locally finite. In

particular, if S = R, the variation meaure of i is a finite. In the Frechet-variation

case, v does not determine such a measure, but it is merely a "C- bimeasure" which

is locally finite. If, however v concentrates on the diagonal of S x S, then (24)

reduces to (12) and the Karhunen class is thus included in class (C) which in turn

is included in weakly of class (C). Here, if g(t, A) = eitA, S = t, then necessarily

v will be of (Frichet) variation finite and the harmonizable class is realized. Thus

the following hierarchy of nonstationary classes is obtained:
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Stationary C strongly harmonizable

C weakly harmonizable

C Karhunen class

C Cramer class

c weakly of class(C).

All these inclusions are proper. One key feature is that each member of these

classes admits an integral representation analogous to that of (14), though their

proofs in each case differ considerably.

Remembering the dilation of a harmonizable series into a stationary one as

given in Theorem 2.2, one might ask for a similar result between the Cramer and

Karhunen classes. The methods and ideas of proof of that result extend to give

only the following somewhat weaker statement.

Theorem 4.1 If {Xt, t E T} C L2(P) is a Karhunen process and A is a

bounded linear transformation on L2(P) into itself, then {Y = AXt,t E T}, is a

process of clas (C) whenever the representing measure G of (13) is finite. The

converse direction (on dilation) is not necessarily valid. However, if in (24) Y, is

of finite (Frechet) variation and each g(t, .), t E T, is individually a bounded Borel

function, then such a class (C) proces can be dilated to a Karhunen process on a

larger space L2(P) containing L2(P).

In this generaliation, it is significant that the full dilation result does not ob-

tain. Only an interesting subclass extends. Details and related references with

further extensions on the problem can be found in [28]. It will appear in applica-

tions (cf. Section 8 below) that these classes arise naturally, especially as solutions

of linear stochastic differential equations of filtering and signal extraction prob-

lems. Another important reason for a study of Karuhunen class will emerge in

Section 7.
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5. Multivariate harmonizable processes. An n-dimensional harmonizabie pro-

cesses Xt = (Xe,,, ),t E as defined in Section 2 (cf.(9) -(11)), has its

covariance matrix r representable as:

r(s, t) = JJ. ft eiP %' F(dAdV), 8,tET,

for a suitable n-by-n matrix of C-bimeasures F. A similar multivariate analog of

Cramer and Karhunen processes can be given with a corresponding formula in the

form of (10). Note that F is also hermitean positive definite for the Karhunen

class but not for the Cramir and harmonizable families. Since there are not many

results available for other classes, the more familiar (nonstationary) harmonizable

case will be discussed here. For this, the spectrum plays a role somewhat analogous

to that of the stationary case, and its spectral domain is given as follows.

In all the extensions of stationarity considered above, their covariance func-

tions admit "factorizable" kernels for their integrands (cf. (3), (13), (24)). This

fact translates itself into integral representations of their sample paths as in (22)

or analogously:

X, =j g(t,A)Z(dA), t E T, (26)

where Z is a measure on S into L (P) which is orthogonally scattered for the

Karhunen case (just as for the stationary processes). It satisfies

E(Z(A)Z(B)) = F(A, B),

for the Cramr and harmonizable processes. Here F is generally only a bimeasure.

The symbol in (26) is a suitable stochastic (or vector measure) integral. It is these

representations that make up a study of the related spectral domain, and inherit

several properties of the time domain. Thus in these cases their spectral spaces

are given as:
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{f: S -. cI jf(A)(A')F(d,dA') = (f f), exist}. (27)

For the harmonizable case S = T, and in all cases 0 _< (f, f) < 0o, because of the

special relationship between F and Z. The (., .) gives a (semi-)inner product and

a (semi-) norm: Iif 112 = (f, f). For the multivariate case one has:

C2 (F) = {f : S -. M I f f f(A)F(dA, dA')f*(A') = (f, f), ezists} (28)

and II lIfII = trace(f, f) defines a semi-norm, fr being the conjugate transpose of

the matrix function f(E M, the space of complex m-by-n matrices). Again S T

for the harmonziable case. In order to carry out linear operations for problems

such as filtering and prediction, it is necessary to know the structural properties of

the space C2 (F). This is nontrivial and especially in the multivariate case it was

open for sometime (cf. [151). The following key property which was needed there,

has recently been estabished for the harmonizable case in [301 and can be stated

as:

Theorem 5.1 If {Xt, t E T} is a multivariate weakly harmonizable process

with F as its spectral matrix function and £ 2 (F), defined by (28), is its spectral

domain space then (C2 (F), I" I.IP) is complete in the sense that it is a Hilbert space

of equivalence classes of matrices with inner product defined by ((.,.)) = trace(,.)

where

Y, g) =f4 A) F(dAdV) (A'), (29)

the "star" denoting the conjugate transpose. Here L 2 (F) is a linear space of (corn-

piex) matrix functions on T with constant matrix coefficients for linear combina-

tions.
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In order to assert a similar property for the class(C) or Karhunen class, it will

be necessary to restrict the family {g(t, .), t E T} suitably.

The importance of the above property is better understood if one looks at an

application. The following is one such for signal extraction. A general signal plus

noise model is given by

X,=St+Nt, tET, (30)

where the St and Nt are (stochastic) signal and noise processes both of which are

supposed to be weakly harmonizable so that the output process Xt is also, whenever

the St and Nt are uncorrelated or harmonizably correlated. For simplicity of

exposition here, let us assume that they are uncorrelated. If F., F., F. are the

(known) spectral functions of these processes, let h(A) = F.(A, T) + F,(A,.T) and

k(A) = F.(A, T). The knowledge of these spectral functions is assumed from prior

considerations. The problem here is to estimate S, optimally, for any a E T, based

on the output Xt (i.e. on a realization). Here optimality refers to the least squares

(or error mean square) criterion. A solution of the problem, using Theorem 5.1,

can be given as

Theorem 5.2 Let X, = St + Nt, t E T, be a harmonizable output of the (un-

correlated harmonizable) signal plus noise model (30). Let Z2 (.) be the stochastic

representing measure of the Xt process given by (14) on (26). Then the least squares

optimal estimation S, of the signal St at t = a E T, is obtained as:

= fJG.(A)Z(dA), (31)

where the "signal characteristic" G.(.) is an n-by-n matriz function which is a

unique solution of the (matriz) integral equation
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JG(A)h(dA) = e'ak(dA), (32)

the h(.) and k(.) being the "marginal" measures of the spectral function.8 of the

St and Nt procesese defined above. The variance-covariance matriz of the error

8. - S is given by

=E J. feaA'F(dA, dA') -JJG. (A) F.(dA, dA) G:(A'). (33)

To use this result in specific applications, one has to compute F, and Z..

From the data one can calculate the covariance r, and then F. is obtained by

means of formula (6). The stochastic measure Z. (.) can also be obtained by using

the dilation theorem (cf. Theorem 2.2) and a known result from the stationary

theory (cf. [321, pp. 26-27). Thus for any interval A = (a, b) c ± for which

Z({a}) = 0 = Z({b}), one has (limits taken in mean-square sense)

Xo(b - a) + limn_ O 2 Z0<jkI<n i- i if T = Z{m. lim 0  fL '-bt- d'
° Xtdt, if T = R.

In the one dimensional stationary case, if all spectral functions have densities

f., fo, f,, then (32) and (33) reduce to the well-known results where the g, and a

can now be given explicitly as:

g.(A) = e" f°(A)/(f.(A) + f,(A)),o' = E(lSo 2 ) - Ig,(A)12 f2(A)dA.

6. Class(KF) and harmonizability. As noted in the preceding sections, many

processes which are extensions of the stationary ones with "triangular covariances'

admit integral representations such as (26). However, there are other classes based
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on the behavior of covariances at infinity. An important such family, motivated by

certain summability methods, is the one introduced in the 1950's by J. Kamp6 de

Feriet and F. N. Frenkiel, with a detailed exposition later in [131. It will be called

cla~s(KF). This was also independently given, slightly later, by Yu.A. Rozanov [31]

and E. Parzen [21], the latter under the name "asymptotic stationarity." Let us

state the precise concept here.

Definition. A process {Xt, t E T} C L2o(P) with a continuous covariance r is

of claes(KF) if for each h E T the following limit exists:

ih lim . - fo- r(s, s + ihI)d,, if T = R

m r -EAi'r(k,k + jh), if T=z. 34

It may be verified that each of the quantities on the right of (34) before

taking the limit is positive definite so that, when the limits exist, i(.) is also. The

continuity of i in the discrete case is trivial and in the case that T = R, is

measurable even when it is not continuous. In either case, as a consequence of -the

classical Herglotz-Bochner-Riesz theorem on a characterization of such functions

(cf.,e.g.,[29], Sections 4.4 and 4.5) there is a unique positive bounded nondecreasing

H(') such that

(h) 4 e iH(dA), a -a.-(h) E T, (35)

where a - a. (h) refers to Lebesgue measure when T = R, and all h if T = Z.

In analogy with (2), H(.) is termed an associated spectral function of the Xt pro-

cess. Here several examples of processes in class(KF), in addition to the obvious

stationary family for which F(h) = r(jhj), will be noted.

Every strongly harmonizable process is in class(KF). This was first noted by

Rozanov in [311 and independently later analyzed in more detail by Bhagavan [1].

In fact, somewhat more generally, almost harmonizable processes (cf. Sec. 2)also
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belong to class(KF), as shown in [25]. It is an interesting fact that, in the strongly

harmonizable case, (35) holds for all h E T, so that i(-) is continuous. Another

example is provided by the process {Xt, t E Z} which is a solution of

Xt =aXt-1+ t, t EZ, (36)

where et are uncorrelated random variables with zero means and unit variances.

and Jai < 1. It is easily seen that the limit (34) exists for this sequence. One can

also consider ktk order difference equations with constant coefficients, extending

(36), such that all the roots oi the characteristic equations lie inside the unit circle,

but the details will not be entered into here. What about the weakly harmonizable

class? In fact, this question was raised in [311. It turns out that neither includes the

other completely. The preceding example already gives a nonharmonizable process

of class(KF). The other noninclusion will now be discussed since that provides a

better insight into the structure of both these classes.

Consider a weakly harmonizable process {X,, t E T} with covariance r and

F as its representing bimeasure (cf.(3)). Suppose that for this bimeasu.re the

dominated convergence theorem holds in the sense that if If, 1 g a.e., f,, --, f

pointwise, and

JJQt (A)(A')F(dAdAV) < 00

limJ f,(A) f,(A) F(dA, dA ) J f(A) f(A ) F(dA, dA') <00o. (37)

If F has finite variation, this is automatic so that the strongly harmonizable cue is

included. It also holds for some F having only finite Frechet variation. For instance

this holds if F is of finite variation locally but not on T x T itself. (Such f'a appear

in the Cramer classes. This statement appeared in ([28], Thin. 8.1) without such
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a preci3e qualifcati=n) On the other hand some restriction is necessary since

all weakly harmonizable processes are not in class(KF) as the following example

shows: Let {fn, -oo < n < oo} be a complete orthonormal sequence in a space

L2(P) so that the underlying probability space is separable. The sequence is clearly

stationary. Let {an, -00 < n < oo} be a bounded sequence of numbers and define

a mapping A: En -* a,,, in L2(P), and extend it linearly onto all of Lo(P). This

is possible since the E, form a basis. Thus A is a bounded linear operator in L2(P),

and since the {,},z is stationary, Theorem 2.2 implies that Xn = Aen, n E Z,

is weakly harmonizable. It will be shown now that for a suitable set of a , 'a, the

X. sequence is not in the class(KF), and this will give the noninclusion statement

mentioned above.

Let an = a_,n, ao = 1, and for k > 0, define

a [c+ 2xDi(k)
n=O

where C,, = [22n, 22n+1) and Dn = [22n+1, 2 2n+2), the left closed and right open

intervals. The sets Cn and Dn are disjoint, and for each k the series is finite (only

one nonzero term), 1 _ ak : 2,k _> 0. Then A defined with this set of an's is

clearly bounded. The covariance r(k, L) = 0 if k 0 1, and hence

0, if h #60
,.,,(h) = ,(k, k+ h)= {o,~ -L2

I&-n A=oak, if h = 0.

So lim-._ r , (h) = 0 for h # 0, but

3 .2S-, if n = 22m+1, (38)

and hence lim,--... r 2s.- 1 (O) - j "  , r2a-+i-.(O) = 3. Thus lim,,. r, (0)3, i.. r22,-L(0=3

does not exist. Consequently {Xn, n E Z} V class(KF). This example is due to H.

Niemi (personal communication).
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The preceding computation suggests an extension of class(KF). Since by def-

inition a process {X,,, n E Z} C L2(P) belongs to class(KF) provided that the

sequence of their averaged covariances converges, it is natural to consider a wider

class by looking at their higher order averages. Thus one can say that a process

with covariance r is in class(KF,p), p = 1 being the original definition (cf.(34)), if

the following limit exists for each h E Z:

lir (P) (h) = i(h), p 1 (39)

where

=nP () ! rP- 1) (h), r~l) (h) = ,()

The analog for the case that T = R can similarly be given. Since in (34)

rn(.) is positive definite, it is seen easily that rP(.) is also positive definite. Hence

i(.) satisfies the same hypothesis and (35) holds, so that the representing H(-) may

now be called a ptl, order as8ociated epectrum. The classical results on summability

imply that if r(') (h) - i(h) then rn"P (h) --+ F(h) for each integer p _ 1, but the

converse implication is false. Hence class(KF) C class(KF,p) C class(KF,p+l)

and the inclusions are proper. Thus one has an increasing sequence of classes of

nonstationary processes each having an associated spectrum. The computations

given for (38) show that the preceding example does not belong even to the class

U.> 1 class(KF,p). This also indicates that weakly harmonizable processes form a

much larger class than the strongly harmonizable or.e, and is not included in the

last union.

It should be remarked here that a further extension of the preceding class

is obtainable by considering the still weaker concept of Abel summabiity. The

consequences of such an extension are not yet known, and perhaps should be

investigated in future.
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The general idea behind the class(KFp-L p> L is that if the given process

is not stationary, then some averaging, which is a smoothing operation, may give

an insight into the structure by analyzing its associated spectrum. Moreover, if

{X,, t E R} E class(KF), and f is any Lebesgue integrable scalar function on R,

then the convolution of f and the Xt process is again in class(KF) whenever the

function 0 defined by 2(t) = [E(jX,12)] is in L"(R) for some 1 < q < oo. Then

Ye = (Y *X)t = f(t- )X.dt ER, (40)

where the integral is a vector (or Bochner) integral, gives {Yt, t E R} E class(KF).

Thus class(KF) itself is a large family. This example is a slight extension of one

indicated in [31].

7. The Cramir-Hida approach and multiplicity. In the previous discussion of

Karhunen and Cramer classes, it was noted that each {Xt, t E T} admits an integral

representation such as (26) relative to a family {g(t, .), t E T} and a stochastic

measure Z(.) on the spectral set S into L2(P). Both g(t,u) and Z(du) can be

given the following intuitive meaning, leading to another aspect of the subject.

Thus Xt may be considered as the intensity of an electrical circuit measured at

time t, Z(du) as a random (orthogonal) impulse at u, and g(t, u) as a response

function at time u but measured at a later time t. So Xt is regarded as the

accumulated random innovations upto t. This will be realistic provided the effects

are additive and g(t. u) = 0 if u > t. Hence (26) should be replaced by

x f (tu)Z(du), t E T. (41)

Since in (26) the g there need not satisfy this condition, that formula does not

generally reduce to (41). So one should seek conditions on a subclass of Karhunen

processes admitting a representation of the type (41) which clearly has interesting

applications. Such a class will be discussed together with some illustrations.
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First it is noted that each process {Xt, t E T} C Lo(P), assumed to be left

continuous with right limits (i.e. for each t E T, E(IXt - Xt-.. 2) -.- 0 as h -- 0+,

and there is an ±t such that E(iXt -Xt+k1 2 ) -- 0 as h --- 0+ , denoted ±t = Xt+o),

can be decomposed into a deterministic and a purely nondeterminiatic part (defined

below). The deterministic component does not change from the remote past so

that it has no real interest for further stochastic analysis such as in prediction

and filtering problems. Thus only the second component has to be analyzed for

a possible representation (41). This was shown to be the case by Cram&r[7] and

Hida[121 independently, and it will be presented here. ([7] has the 1960 reference.)

Let M1 = Tf{X,,t E T} c L(P), and similarly Mt = p{Xo,. < t} C X

and )1-, = ntet. Since Ml1 C M,, for tj < t2 , one has M-,, c Mt c M and

)/_. represents the remote past while )t stands for the past and present. The Xt

process is deterministic if X-,, 0 = M and purely nondeterminitic if M-. = {0}.

Thus the remote past generally contributes little to the experiment. The separation

of remote past from the evolving part is achieved as follows. A process {Xt, t E T}

which is left continuous with right limits (and this is automatic if T = Z) can be

uniquely decomposed as: Xt = Y + Zt, t E T, where the Yt-component is purely

nondeterministic, the Zt is deterministic and where the Y and Zt processes are

uncorrelated. (This is a special case of Wold's decomposition.)

Since the deterministic part is uninteresting for the problems of stochastic

analysis, and can be separated by the above result, one can ignore it. Hence for the

rest of this section it will be assumed that our processes are purely nondeterministic.

The proofs of the following assertions may be completed from the work of Cramir

in [7], (cf., the references for his early papers there).

The approach here does not give much insight if T = Z. However, T = R

is really the difficult case, and the present method is specifically designed for it.

The new element in this analysis is the concept of "multiplicity", and it is always
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one ifT = Z while it can be any integer N > 1 ifT = R. (See [5], and the

references there, and also [7].) The basic idea is to "break up" the continuous

parameter case, in the sense that each such process can be expressed as a direct

sum of mutually umcorrelated components of the type (41) so that each of the

latter elements can be analyzed with special methods. This relatively deep result

was obtained independently (cf., [7] and [12]) and can be given as follows:

Theorem 7.1 Let {Xt, t E R} C L2(P) be a purely nondeterministic process

which is left continuous with right limits on R. Then there eziats a unique integer

N, 1 < N < oo, called the multiplicity of the process, and a not necessarily unique

set of ordered pairs {(gt(t, .), Fk,), 1 <_ k <_ N, t E R} of the following description:

(i) g%(t, ):R C is a Borel function, 1 < k < N,t E R,

(ii) Fj,: R -* R is a non-decreasing (not necessary bounded) left-continuous

function such that if uYk(A) = fA Fk (dA),A C R is a Borel set, then z%+, <<
L';, 1 < k < N, (i.e. vAk+1 is dominated by v,)

(iii) {gA(a, -), s < t} c L2((-o,t),&) is IuoM) 4ee; end if r is tAe o4Op.

ance function of the Xt proces, then

N
r(, t)=ZI g,,(8,A)g (t,A)Ft (dA), ,t E R, (42)

h=1L

the series converging absolutely if N = +oo.

Using the Lebesgue decomposition of measure theory, it can be verified that if

the X, process is stationary and nondeterministic then in (2) the spectral function

is absolutely continuous relative to the Lebesgue measure on R with a density and

hence, as noted in (12), (42) becomes

inin(e,t)

r(s,t)---- g(s - A)g(t - A)dA. (43)

Thus such stationary processes always have multiplicity unity. The converse is not
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true. There exist nonstationary (even strongly harmonizable) nondeterministic

processes of multiplicty N for any given N, 1 <N <5 oo.

It should be noted that (42) can also be stated for the Xt process using the

(stochastic) integral representations:

Xf t
L1 J_ gkt u) ZA:(du), t E R, (44)

where each Z&(.) is orthogonally scattered, E(Zk(A)ZI(B)) = 0 if k # 1, and

= Y.k(AnB) = fAn Fk(dA) if k =1. The pairs {gA(t),.),Fk),1 <k < N,t E R}
satisfy the previous conditions. Moreover, one has

=L - ~ Ki,t, t E R, (45)

where )t was defined before and Ki,t = 7'{Zi(-oo, 8) : 8 <t} C Lo2(P). Also in

case g(t,t) > 0, t E R, then writing A;(t,A) = g&(t,A)/gk(A,A), and 2A;(dA) =

gk(A. A)Z(dA) in (42) or (44) one can assume that g&(A, A) = 1, for convenience.

To get a better feeling for this somewhat complicated decomposition, let us

present a class of nonstationary processes of multiplicity one.

Theorem 7.2 Suppose that {Xt, t E R} C L2(P) is a process which may

be represented as (44) (or (42)). Suppose further that each g&(.,.) satisfies the

following conditions:

(i) g&(t, t) = 1 (this is no restriction if g(t, t) > 0), t E R,

(ii) for each A :_ t, gk(t, A) and -t (t, A) ezists, continuous and bounded,

(iii) each F $ a constant and has a (Lebesgue) density Fk which has at most

a finite number of discontinuities on each finite subinterval of R.

Then the multiplicity of the process {Xt, t E R} is one,i.e., N = 1.
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The case N = I already has interesting connections with other known classes.

For instance let g(t.A) = p(t)/p(A) in (42) with N = 1, and p(A) > 0, A E R.

Writing f = F', (42) becomes

r(s, t) = p(s)p(t) j (46)

Hence for all 3 < t < u, if p(.i. t) = r(.s, t)/r(s, .i) Is < t, one gets

p(, u) = p(s, t)p(t, U). (47)

This p(-,-) is called a correlation characteriatic, and the functional equation (47)

implies that {Xt, t E R} is a wide- sense Markov process. This means for each

tI < t2 < ... < t., n _> 1, tk E R, the (orthogonal) projection of Xt, on the linear

span of Xt 1, ..., Xt.-, is the same as the projection of X,. on the one dimensional

span of Xt.-,. (For a proof of this classical fact seeI29], p. 145.) It is of some

interest to note that, in the special case of (46), if j(s, t) = r(i, t)/[r(a,a)r(t, t)],

the correlation coefficient, then also j satisfies the relation (47). If the Xt process

is normal and (46) holds, the above noted projection becomes the conditional

expectation and the wide-sense property becomes the usual (strict-sense) Markov

property. As an example, one may consider r(s, t) = exp(-cis - t1), c > 0.

A different example of a nonstationary (nonharmonizable) process of multi-

plicity one is the Brownian motion. Here g(t, A) = 1, F(u) = 0 if u < 0, = u, if

0< u < 1, and = 1 if u> 1 N = 1 in (42). If the process is not assumed normal

(or Gaussian), g =- a constant, and F is also a constant outside of a compact in-

terval, then each nondeterministic process of the form (44), which has orthogonal

increments, has multiplicity one. Thus each of these classes is large in itself. More

usefid applications will now be discussed in the final two sections. (cf. also [71.)

8. Prediction and related queationa A linear least squares prediction of the

Xt process, by definition, is a linear function of the past and present {X., u < q}
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which is closest to Xt, t > 3, so that if Xe,. is the desired element in )4, then

E(IX, - ±t'. 12 ) = inf{E(Xt - y12): y E )1.}, (48)

where, as usual )4 = Tp{X,, u < s} C L2(P). Consequently ±t,. = P.Xt, with P,

as the orthogonal projection of M = "T{X,, t E R} C L2(P) onto )4.

For processes satisfying the hypothesis of Theorem 7.1, the predictor ±,,, is

obtained immediately. In fact, if Xt is as above so that it admits a representation

given by (44), one has

±t, = PXf = g"(t,A)Zk(dA), (49)
k=1 c

since N. = e_-Ki,. in (45). Moreover, the minimum mean square error of predic-

tion is obtained as

N t

O,. = r(l - ,.12) = I gh(t, A)12 Fk(dA). (50)
k=- °

This in principle furnishes the desired solution of the least squares linear prediction

problem for processes of the type (44). In general, however, there is as yet no

recipe for determining the multiplicity of a given continuous parameter purely

nondeterministic second order left continuous with right limits process. But results

are available if one is willing to assume somewhat more on gj's, generalizing the

stationary case.

Even when the X, process does not satisfy all the conditions of Theorem 7.1,

the least squares prediction problem can be formulated and solved differently. To

understand this aspect, let {X,,t e T} C L~o(P) be a process and Mt = '{X. :

s _5 t} as before. Suppose that X = "{X,, t E T} c L2(P) is separable, which

holds if the covariance r(-, .) is continuous (e.g., T = Z). For each to E T, the

best linear least squares predictor of Xt based on the past {X., u 5 a < to} is
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= PXt, (ie).) and it is the limit-in-mean of linear combinations of X,, u < s.

On the other hand, it is known that a nonlinear least squares predictor of Xto is

given by the conditional expectation

Yto,. = E(Xt. IX,,,,, < 8).

If the process is normal then one can verify that ±t.,, = Yo,,. Thus for normal pro-

ces3es, with a continuous covariance, both these predictors coincide. (See Yaglom

(34j, Chapters 4 and 6 for a lucid discussion of these problems.) Since from a practi-

cal point of view it is not feasible to have a complete realization {X., u _5 a} at our

disposal, it is desirable to have some approximations to the best predictor. A result

on this can be described as follows. Let T = Z for simplicity, and for a < to E Z,

define 9, s - ap{X.,X.-.,...,X.. so that lim,.g, = 'P{U,,<o9n} = M.. If

X¢o,- = Q,(Xto), Q. being the orthogonal projection of M onto g, then one can

show, using the geometry of N, that E(I.¢,, - ±to,.12) - 0 as n -- oo. However,

the pointwise convergence of Xto,,n to Xt,,o is much more difficult, and in fact the

truth of the general statement is not known. For a normal process, an affirmative

answer can be obtained from the following nonlinear case.

Let Yo,n = E(XtojX.,X.-_ 1 , ...,X.-n) and Y,. be as before. Then the se-

quence lYton, I _ 1} is a square integrable martingale such that aup.E(lYo,nl 2 ) <

oo. Hence the general martingale convergence theory implies Yt,n - Yto,. both

in the mean and with probability one, as n - oo. Since for normal processes both

the linear and nonlinear predictors coincide, the remark at the end of the preced-

ing paragraph follows. Thus predictors from finite but large samples give good

(asymptotic) approximations for solutions Xto,. (or Y.,.) and this is important in

practical cases. However, the error estimation in these problems received very little

attention in the literature. In the case of normal processes certain other methods

(e.g., the Kalman filter etc.) giving an algorithm to compute the to,n-sequence
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are available. But there is no such procedure as yet for the general second order

processes.

At this point it will be useful to present a class of nondeterministic processes,

belonging to a Karhunen class, which arise quite naturally as solutions of certain

stochastic differential equations. This will also illustrate the remark made at the

end of Section 4.

In some problems of physics, the motion Xt of a simple harmonic oscillator,

subject to random disturbances, can be described by a formal stochastic differential

equation of the form (cf.[31):

d2X(t) dX(t)Xt) + t + W2X(t) = A(t), (X(t) = Xt), (51)

where P is the friction coefficient and wo denotes the circular frequency of the

oscillator. Here A(t) is the random fluctuation, assumed to be the white noise-the

symbolic (but really fictional) derivative of the Brownian motion. In some cases

and wo may depend on time. To make (51) realistic, the symbolic equation should

be expressed as:

dx(t) + at(t)±(t)dt + a2(t)X(t)dt = dB(t), (52)

where the B(t)-process is Brownian motion. Thus for each t > 0, B(t) is normal --

with mean zero and variance o2 t, denoted N(0, o2t), and if 0 < t, < t2 < t3 then

B(t3 ) - B(t 2) and B(t2) - B(ti) are independent normal random variables with

N(O, g 2 (t3 - t)), N(Oo r2(t 2 - ti)) respectively. Also ±(t) = dQ1 is taken as adt

mean square derivative. Then (52) and (51) can be interpreted in the integrated

form, i.e., by definition,

f(t)A(t)dt = L (t)dB(t), (53)
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the right side of (53) being a simple stochastic integral which is understood as

in Section 3(since B is also orthogonally scattered). Here f is a nonstochastic

function. The integration theory, if f is stochastic needs a more subtle treatment

and the B(t)-process can also be replaced by a "semi-martingale." (See, e.g., [26],

Chapter IV and V for details.) The point is that the following statements have

a satisfactory and rigorous justification. With Brownian motion one can assert

more, and, in fact regarding the solution process of (52), the following is true.

Theorem 8.1 Let J = [ao, bo] C R+ be a bounded interval, and {Bt, t E J}

be the Brownian motion. If ai(.), i = 1, 2 are real (Lebesgue) integrable functions

on J such that equation (52) is valid, then there ezists a unique solution process

{X, t E J} satisfying the initial conditions X,, = CI, X~o = C2 where CI, C2 are

constants. In fact, the solution is defined by-

Xt= J G(t,u)dB(u)+C 1V1 (t)+C 2V2(t), tE J, (54)

where Vi(-),i = 1,2 are the unique solutions of the accompanying homogeneous

differential equation:

d2 f(t)df)
d2 + af (- + a2 (t)f(t) = 0 (55)
dt2 dt

with the initial conditions f(ao) = 1, f(ao) = 0, and f(ao) = 0, f(ao)= 1 respec-

tively. In (54), G : J x J --+ C is the Green function. This is a continuous function

such that 2 is continuous in (t, s) on ao :5 t 5 s :_ bo, and has a jump on the

diagonal, i.e.,

8G ( 8 + O's G ( ,8
Tt at(56)

Moreover, the X, process given by (54) is of Karhunen class and is purely nondeter-

miniatic (since the spectral function of B is the Lebesgue measure). Its covariance

r is given by
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r(3,t) G a(s, A)G(t,A) dA, 8,t E J, (57)

and the proces has multiplicity one.

This result shows that the processes appearing as solutions of the (linear)

stochastic differential equations have interesting special properties. Further one

can show that the vector process {(Xt,t), t E J} is a (vector) Markov normal

process almost all of whose sample paths are continuous. (For details of these

assertions, see [251, Sec. 4.) Related results for the nth-order case with continuously

(n-i) times differentiable coefficients a&(), and initial conditions Ci = 0 have been

analyzed by C. L. Dolph and M. A. Woodbury [8]. The work exemplifies the

importance of nondeterministic processes of multiplicity one in applications coming

from both the physical sciences and communication theory. Let us now turn to

another type of application.

The general filtering problem can be presented, following Bochner [2], as fol-

lows. Let ZT be the set of all second order process X = {X,, t E T}, with zero

means. Let A be a linear operator on the linear space XT. Suppose X, Y E ITr

and that X E domain(A), and

AX = Y or (AX),, = Y,, t E T. (58)

As usual T = Z, or = R. Typically the Y-process is the output and the X process,

the input and A is termed a (linear) filter. The problem here is to find conditions on

A such that if the output is known one can recover the input process. As examples,

(AX), = aX_, t E Z, a, E R,

(AX), J X,.f(u)du, t E R, suitable f.
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The first one is called a difference or a polynomial or a moving average filter, and

the second one, an integral filter, one can also have a difference-differential or an

integro-differential filter and the like. If both X, Y are stationary processes and A

is a polynomial or an integral filter, then precise conditions for recovering the input

were first obtained by Nagabhushanam [19]. His results were extended by Kelsh

[151 if X, Y are strongly harmonizable, and (using necessarily different methods)

a further extension to the weakly harmonizable case by Chang. For an exposition

of these results with a numerical illustration, one may refer to [4].

The above described filtering problem changes its character if only a finite

segment of the observations on {Xt, t E T} is available. Assuming a knowledge

of the covariance structure (from prior information) of the process, how can one

estimate an element of the process (prediction or interpolation) which is not part

of the observed ones? While a precise set of conditions is difficult to obtain, good

sufficient conditions can be given for its solution. This point will be discussed by

a specialization and adjustment of the work from [8].

Let {Xt,0 < t < 1} C L2 (P) be an observed process which is known to have

a linear time trend and a random disturbance. Thus the model is given as:

Xt=a+bt+Y,, 0!t<1 (59)

where a, b are real but unknown constants and {Yt, 0 < t < 1} is a noise process

which is assumed to be stationary with mean zero and covariance r, given by

r(s, t) = ezp(-8)s - tj), f > 0. The problem is to find an unbiased linear estimator

of Xt.,to > 1, based on the output {Xt,0 t < 1}, using the least squares

criterion. This can be made more explicit as follows: it is desired to find a weight

function w(.) on 0 < t < 1 which is of bounded variation such that if

p1
J(w) o Xtdw(t). (60)

38



is the linear estimator then E(Xjt(w,)) = a+bto, a,6 E R and E(fXeo -- eo(W) 12)

is a minimum. Since r and hence # are known, let us take f- = 1 for this illustration.

Then subject to the unbiasedness constraint, one can minimize the mean square

error using the variational calculus (or Lagrange multipliers) and show that there

exists a wt, "t ,w(.) having a density w'. Thus after a calculation, one finds w' and

X,(w) to be:

2w'(t) = T[56 - 36to + 36t(2to - 1)] (61)

and

Xt(Wo) = { Xt[28 - 18to + 18t(2to - 1)]dt

- 2X,(4 - 27to ) - 2Xo(27to - 23)}. (62)

The mean square error for this problem is then

o2 = E(IXt o - ,t. (Wo) = [72tO - 72to + 561/57. (63)

The actual details of computations for (61)-(63) involve solving an integral equation

and thus are not entirely simple. It is however interesting to remark that, in this

calculation, one need not find estimators of a, b separately from the data, and the

variational calculus enables a direct solution as indicated.

The problem of minimum variance unbiased (linear) estimator of a, b is also

important. For instance, if b = 0 in (59), then an estimator of the unknown

parameter a (i.e. estimating the mean of the X process without trend) can be

obtained by a similar method. The estimator & of the form

a(, 1 Xtdt,(t), E(a(w)) a, a E R,
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has been considered by Grenander [10], and the result is:

a = [xtdt + X + X0]. (64)
3 "O

Other estimation methods and their properties are discussed for stationary error

processes in [11].

9. Some inference problema with normal procesuea. In this final section some

special inference questions when the processes are normal are briefly discussed to

supplement the preceding work.

Recall that a normal process {Xt, t E T} is a collection of random variables

such that each finite subset has a joint normal distribution. Now if (12, E, Pi), i =

1,2 are a pair of probability spaces with a common base space Q2, then P, and

P 2 are said to be mutually aingtdar or perpendicular (written P I P2) if there is

an event Ao E E such that P1 (Ao) = 0 and P2(Ao) = 1, and mutually abeolutely

continuous or equivalent (written P, "- P2 ) if both P and P2 vanish on the same

class of sets from E. For instance, if f0 = R, E = the Borel a,-algebra, P = normal

and P2 = Cauchy, then P " Q. On the other hand if P is normal and P 2 is

Poisson, then PL I P2 . However, if 0] - RT, E = the cylinder a- algebra, then

Xt : Ql - R is defined as Xt(w) = w(t), i.e., the coordinate function, and the

problem of determining as to when P - P2 , or P1 I P2 , or neither, is not simple.

In the case that both PI, P2 are normal probability measures on fQ - RT, only the

main dichotomy that P1 - P2 or P1' I P2 can occur. This was first established

independently by J. Feldman and J. HAjek in 1968 and later elementary proofs

of this theorem were presented by L.A. Shepp and others. A simplified but still

nontrivial proof of this result with complete details is given in ([271, pp. 212-217).
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The statistical problem therefore is to decide, on the basis of a realization,

which one of P1, P2. is the correct probability governing the process. In the singular

case, this is somewhat easier, but in case PI - P 2 , the problem is not simple. A

number of cases have been discussed in [10] before the dichotomy result is known.

The simplest usable condition in the general case is the following.

Let Pi have the mean and covariance functions (mi,ri), written P(mi, ri),i =

1,2. Then P1  P P2 iff one has P(0, r) P(O, r 2 ) and P(ml, r) -' P(m2, rj).

Thus P(mi, r) " P(m 2 , r 2 ) if P(m 1 ,rl) P(m 2 , rl) " P(m 2 , r 2 ). Some appli-

cations with likelihood ratios appear in [251. This equivalence criterion will now

be illustrated on a purely nondeterministic normal process of multiplicity one.

If {Xt, t E T} is a normal process with mean zero and covariance r let Zt -

m(t) + Xt where m : T - R is a measurable nonstochastic function, so that the

Zt-process has mean function m and covariance r and is also normal. Let P and

P. be the corresponding probabilities governing them. The mean m(.) is called

admisible if P -,, Pm.. The set Mp of all admissible means is an interesting space

in its own right. In fact, it is a linear space, carries an inner product and with

it Mp becomes a Hilbert space attached to the given normal process. (For an

analysis of Mp, and the following, see [241.) One shows that m E Mp if" there is

a unique Y E Mf ='{Xt,tET} C L2(P) such that

m(t) = E(YXt), t E T (65)

and then the likelihood ratio A is given by

dPm _ expfY - .E(1Yj2)}. (66)

Using now an abstract generalization of the classical Neyman-Pearson lemma due

to Grenander ([10]. p.210), one can test the hypothesis Ho : m - 0, vs, H, : m(t)

0. The critical region for this problem can be shown to be
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A = (W E Q: Y(w) _ k, (67)

where k is chosen so that P(Ak) = a, the prescribed size of the test (e.g., a = 0.05

or 0.01). This general result was first obtained by Pitcher 1231. In the case of

nondeterministic processes of multiplicity one, the conditions on admissible means

can be simplified much further. This may be stated following Cramer [71, as follows.

Let T = [a, b] and Xt be purely nondeterministic so that by (44) with N = 1,

one has

Xt g(t, ))Z(dA), t E T, (68)

and that X = "p{Xt E T} = "p'{Z(A) : A C T, Borel}. But m E Mp iff there

exists a Y E ) such that (65) holds. In this special case therefore, Y admits a

representation as

Y = h(A)Z(dA), (69)

for some h E L2 ([a, bJ, F) where F(A) = E(IZ(A)I'). Suppose that the deriva-

tive F' exists outside a set of Lebesgue measure zero. Since Z(-) has orthogonal

increments, (65), (68) and (69) imply

m(t) j h(A)g(t, A)F'(A)dA, t E T = [a, b]. (70)

This is the simplification noted above. If f is assumed to exist, then (70) implies

that the derivative m'(t) of m(t) also exists. In particular if the Xt is the Brownian

motion so that g I 1 and F' = 1, one gets m'(t) - h(t), (a.e.) and h E L 2([a, b], d)

in order that Pm P.

There is a corresponding result, when P1  P2 , P are normal, but have dif-

ferent covariances. However, this is more involved. A discussion of this case from
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different points of view occurs in the works [35], [331, [7] and [251. (See also the

extensive bibliography in these papers.) There is a great deal of specialized anal-

ysis for normal process in both the stationary and general cases. It is thus clear

how various types of techniques can be profitably employed to several classes of

nonstationary processes of second order. Many realistic problems raised by the

above work are of interest for future investigations.
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